7.11 Global functions

These functions are not methods of mglData class. However it provide additional functionality to handle data. So I put it in this chapter.

MGL command: transform DAT 'type' real imag
Global function: mglData mglTransform (const mglDataA &real, const mglDataA &imag, const char *type)
C function: HMDT mgl_transform (HCDT real, HCDT imag, const char *type)

Does integral transformation of complex data real, imag on specified direction. The order of transformations is specified in string type: first character for x-dimension, second one for y-dimension, third one for z-dimension. The possible character are: ‘f’ is forward Fourier transformation, ‘i’ is inverse Fourier transformation, ‘s’ is Sine transform, ‘c’ is Cosine transform, ‘h’ is Hankel transform, ‘n’ or ‘ ’ is no transformation.

MGL command: transforma DAT 'type' ampl phase
Global function: mglData mglTransformA const mglDataA &ampl, const mglDataA &phase, const char *type)
C function: HMDT mgl_transform_a HCDT ampl, HCDT phase, const char *type)

The same as previous but with specified amplitude ampl and phase phase of complex numbers.

MGL command: fourier reDat imDat 'dir'
MGL command: fourier complexDat 'dir'
Global function: void mglFourier const mglDataA &re, const mglDataA &im, const char *dir)
Method on mglDataC: void FFT (const char *dir)
C function: void mgl_data_fourier HCDT re, HCDT im, const char *dir)
C function: void mgl_datac_fft (HADT dat, const char *dir)

Does Fourier transform of complex data re+i*im in directions dir. Result is placed back into re and im data arrays. If dir contain ‘i’ then inverse Fourier is used.

MGL command: stfad RES real imag dn ['dir'='x']
Global function: mglData mglSTFA (const mglDataA &real, const mglDataA &imag, int dn, char dir='x')
C function: HMDT mgl_data_stfa (HCDT real, HCDT imag, int dn, char dir)

Short time Fourier transformation for real and imaginary parts. Output is amplitude of partial Fourier of length dn. For example if dir=‘x’, result will have size {int(nx/dn), dn, ny} and it will contain res[i,j,k]=|\sum_d^dn exp(I*j*d)*(real[i*dn+d,k]+I*imag[i*dn+d,k])|/dn.

MGL command: triangulate dat xdat ydat
Global function: mglData mglTriangulation (const mglDataA &x, const mglDataA &y)
C function: void mgl_triangulation_2d (HCDT x, HCDT y)

Do Delone triangulation for 2d points and return result suitable for triplot and tricont. See Making regular data, for sample code and picture.

MGL command: tridmat RES ADAT BDAT CDAT DDAT 'how'
Global function: mglData mglTridMat (const mglDataA &A, const mglDataA &B, const mglDataA &C, const mglDataA &D, const char *how)
Global function: mglDataC mglTridMatC (const mglDataA &A, const mglDataA &B, const mglDataA &C, const mglDataA &D, const char *how)
C function: HMDT mgl_data_tridmat (HCDT A, HCDT B, HCDT C, HCDT D, const char*how)
C function: HADT mgl_datac_tridmat (HCDT A, HCDT B, HCDT C, HCDT D, const char*how)

Get array as solution of tridiagonal system of equations A[i]*x[i-1]+B[i]*x[i]+C[i]*x[i+1]=D[i]. String how may contain:

  • xyz’ for solving along x-,y-,z-directions correspondingly;
  • h’ for solving along hexagonal direction at x-y plain (require square matrix);
  • c’ for using periodical boundary conditions;
  • d’ for for diffraction/diffuse calculation (i.e. for using -A[i]*D[i-1]+(2-B[i])*D[i]-C[i]*D[i+1] at right part instead of D[i]).

Data dimensions of arrays A, B, C should be equal. Also their dimensions need to be equal to all or to minor dimension(s) of array D. See PDE solving hints, for sample code and picture.

MGL command: pde RES 'ham' ini_re ini_im [dz=0.1 k0=100]
Global function: mglData mglPDE (HMGL gr, const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, mreal dz=0.1, mreal k0=100, const char *opt="")
Global function: mglDataC mglPDEc (HMGL gr, const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, mreal dz=0.1, mreal k0=100, const char *opt="")
C function: HMDT mgl_pde_solve (HMGL gr, const char *ham, HCDT ini_re, HCDT ini_im, mreal dz, mreal k0, const char *opt)
C function: HADT mgl_pde_solve_c (HMGL gr, const char *ham, HCDT ini_re, HCDT ini_im, mreal dz, mreal k0, const char *opt)

Solves equation du/dz = i*k0*ham(p,q,x,y,z,|u|)[u], where p=-i/k0*d/dx, q=-i/k0*d/dy are pseudo-differential operators. Parameters ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters Min, Max set the bounding box for the solution. Note, that really this ranges are increased by factor 3/2 for purpose of reducing reflection from boundaries. Parameter dz set the step along evolutionary coordinate z. At this moment, simplified form of function ham is supported – all “mixed” terms (like ‘x*p’->x*d/dx) are excluded. For example, in 2D case this function is effectively ham = f(p,z) + g(x,z,u). However commutable combinations (like ‘x*q’->x*d/dy) are allowed. Here variable ‘u’ is used for field amplitude |u|. This allow one solve nonlinear problems – for example, for nonlinear Shrodinger equation you may set ham="p^2 + q^2 - u^2". You may specify imaginary part for wave absorption, like ham = "p^2 + i*x*(x>0)". See also apde, qo2d, qo3d. See PDE solving hints, for sample code and picture.

MGL command: apde RES 'ham' ini_re ini_im [dz=0.1 k0=100]
Global function: mglData mglAPDE (HMGL gr, const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, mreal dz=0.1, mreal k0=100, const char *opt="")
Global function: mglDataC mglAPDEc (HMGL gr, const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, mreal dz=0.1, mreal k0=100, const char *opt="")
C function: HMDT mgl_pde_solve_adv (HMGL gr, const char *ham, HCDT ini_re, HCDT ini_im, mreal dz, mreal k0, const char *opt)
C function: HADT mgl_pde_solve_adv_c (HMGL gr, const char *ham, HCDT ini_re, HCDT ini_im, mreal dz, mreal k0, const char *opt)

Solves equation du/dz = i*k0*ham(p,q,x,y,z,|u|)[u], where p=-i/k0*d/dx, q=-i/k0*d/dy are pseudo-differential operators. Parameters ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters Min, Max set the bounding box for the solution. Note, that really this ranges are increased by factor 3/2 for purpose of reducing reflection from boundaries. Parameter dz set the step along evolutionary coordinate z. The advanced and rather slow algorithm is used for taking into account both spatial dispersion and inhomogeneities of media [see A.A. Balakin, E.D. Gospodchikov, A.G. Shalashov, JETP letters v.104, p.690-695 (2016)]. Variable ‘u’ is used for field amplitude |u|. This allow one solve nonlinear problems – for example, for nonlinear Shrodinger equation you may set ham="p^2 + q^2 - u^2". You may specify imaginary part for wave absorption, like ham = "p^2 + i*x*(x>0)". See also pde. See PDE solving hints, for sample code and picture.

MGL command: ray RES 'ham' x0 y0 z0 p0 q0 v0 [dt=0.1 tmax=10]
Global function: mglData mglRay (const char *ham, mglPoint r0, mglPoint p0, mreal dt=0.1, mreal tmax=10)
C function: HMDT mgl_ray_trace (const char *ham, mreal x0, mreal y0, mreal z0, mreal px, mreal py, mreal pz, mreal dt, mreal tmax)

Solves GO ray equation like dr/dt = d ham/dp, dp/dt = -d ham/dr. This is Hamiltonian equations for particle trajectory in 3D case. Here ham is Hamiltonian which may depend on coordinates ‘x’, ‘y’, ‘z’, momentums ‘p’=px, ‘q’=py, ‘v’=pz and time ‘t’: ham = H(x,y,z,p,q,v,t). The starting point (at t=0) is defined by variables r0, p0. Parameters dt and tmax specify the integration step and maximal time for ray tracing. Result is array of {x,y,z,p,q,v,t} with dimensions {7 * int(tmax/dt+1) }.

MGL command: ode RES 'df' 'var' ini [dt=0.1 tmax=10 'jump'='']
Global function: mglData mglODE (const char *df, const char *var, const mglDataA &ini, mreal dt=0.1, mreal tmax=10, const char *jump="")
Global function: mglDataC mglODEc (const char *df, const char *var, const mglDataA &ini, mreal dt=0.1, mreal tmax=10, const char *jump="")
C function: HMDT mgl_ode_solve_str (const char *df, const char *var, HCDT ini, mreal dt, mreal tmax)
C function: HMDT mgl_ode_solve_str_b (const char *df, const char *var, HCDT ini, mreal dt, mreal tmax, const char *jump)
C function: HADT mgl_ode_solve_str_c (const char *df, const char *var, HCDT ini, mreal dt, mreal tmax)
C function: HADT mgl_ode_solve_str_cb (const char *df, const char *var, HCDT ini, mreal dt, mreal tmax, const char *jump)
C function: HMDT mgl_ode_solve (void (*df)(const mreal *x, mreal *dx, void *par), int n, const mreal *ini, mreal dt, mreal tmax)
C function: HMDT mgl_ode_solve_ex (void (*df)(const mreal *x, mreal *dx, void *par), int n, const mreal *ini, mreal dt, mreal tmax, void (*jump)(mreal *x, const mreal *xprev, void *par))

Solves ODE equations dx/dt = df(x). The functions df can be specified as string of ’;’-separated textual formulas (argument var set the character ids of variables x[i]) or as callback function, which fill dx array for give x’s. Parameters ini, dt, tmax set initial values, time step and maximal time of the calculation. Function stop execution if NAN or INF values appears. Result is data array with dimensions {n * Nt}, where Nt <= int(tmax/dt+1).

If dt*tmax<0 then regularization is switched on, which change equations to dx/ds = df(x)/max(|df(x)|) to allow accurately passes region of strong df variation or quickly bypass region of small df. Here s is the new "time". At this, real time is determined as dt/ds=max(|df(x)|). If you need real time, then add it into equations manually, like ‘ode res 'y;-sin(x);1' 'xyt' [3,0] 0.3 -100’. This also preserve accuracy at stationary points (i.e. at small df in periodic case).

Functions jump are called each steps to handle special conditions (like reflection at boundary or jumps).

MGL command: ode RES 'df' 'var' 'brd' ini [dt=0.1 tmax=10]
Global function: mglData mglODEs (const char *df, const char *var, char brd, const mglDataA &ini, mreal dt=0.1, mreal tmax=10)
Global function: mglDataC mglODEcs (const char *df, const char *var, char brd, const mglDataA &ini, mreal dt=0.1, mreal tmax=10)
C function: HMDT mgl_ode_solve_set (const char *df, const char *var, char brd, HCDT ini, mreal dt, mreal tmax)
C function: HADT mgl_ode_solve_set_c (const char *df, const char *var, char brd, HCDT ini, mreal dt, mreal tmax)

Solves difference approximation of PDE as a set of ODE dx/dt = df(x,j). Functions df can be specified as string of ’;’-separated textual formulas, which can depend on index j and current time ‘t’. Argument var set the character ids of variables x[i]. Parameter brd sets the kind of boundary conditions on j: ‘0’ or ‘z’ – zero at border, ‘1’ or ‘c’ – constant at border, ‘2’ or ‘l’ – linear at border (laplacian is zero), ‘3’ or ‘s’ – square at border, ‘4’ or ‘e’ – exponential at border, ‘5’ or ‘g’ – gaussian at border. The cases ‘e’ and ‘g’ are applicable for the complex variant only. Parameters ini, dt, tmax set initial values, time step and maximal time of the calculation. Function stop execution if NAN or INF values appears. Result is data array with dimensions {n * Nt}, where Nt <= int(tmax/dt+1). For example, difference aprroximation of diffusion equation with zero boundary conditions can be solved by call: ‘ode res 'u(j+1)-2*u(j)+u(j-1)' 'u' '0' u0’, where ‘u0’ is an initial data array.

If dt*tmax<0 then regularization is switched on, which change equations to dx/ds = df(x)/max(|df(x)|) to allow accurately passes region of strong df variation or quickly bypass region of small df. Here s is the new "time". At this, real time is determined as dt/ds=max(|df(x)|). If you need real time, then add it into equations manually, like ‘ode res 'y;-sin(x);1' 'xyt' [3,0] 0.3 -100’. This also preserve accuracy at stationary points (i.e. at small df in periodic case).

MGL command: qo2d RES 'ham' ini_re ini_im ray [r=1 k0=100 xx yy]
Global function: mglData mglQO2d (const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
Global function: mglData mglQO2d (const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mreal r=1, mreal k0=100)
Global function: mglDataC mglQO2dc (const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
Global function: mglDataC mglQO2dc (const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mreal r=1, mreal k0=100)
C function: HMDT mgl_qo2d_solve (const char *ham, HCDT ini_re, HCDT ini_im, HCDT ray, mreal r, mreal k0, HMDT xx, HMDT yy)
C function: HADT mgl_qo2d_solve_c (const char *ham, HCDT ini_re, HCDT ini_im, HCDT ray, mreal r, mreal k0, HMDT xx, HMDT yy)
C function: HMDT mgl_qo2d_func (dual (*ham)(mreal u, mreal x, mreal y, mreal px, mreal py, void *par), HCDT ini_re, HCDT ini_im, HCDT ray, mreal r, mreal k0, HMDT xx, HMDT yy)
C function: HADT mgl_qo2d_func_c (dual (*ham)(mreal u, mreal x, mreal y, mreal px, mreal py, void *par), HCDT ini_re, HCDT ini_im, HCDT ray, mreal r, mreal k0, HMDT xx, HMDT yy)

Solves equation du/dt = i*k0*ham(p,q,x,y,|u|)[u], where p=-i/k0*d/dx, q=-i/k0*d/dy are pseudo-differential operators (see mglPDE() for details). Parameters ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters ray set the reference ray, i.e. the ray around which the accompanied coordinate system will be maked. You may use, for example, the array created by ray function. Note, that the reference ray must be smooth enough to make accompanied coodrinates unambiguity. Otherwise errors in the solution may appear. If xx and yy are non-zero then Cartesian coordinates for each point will be written into them. See also pde, qo3d. See PDE solving hints, for sample code and picture.

MGL command: qo3d RES 'ham' ini_re ini_im ray [r=1 k0=100 xx yy zz]
Global function: mglData mglQO3d (const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
Global function: mglData mglQO3d (const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mglData &zz, mreal r=1, mreal k0=100)
Global function: mglDataC mglQO3dc (const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mreal r=1, mreal k0=100)
Global function: mglDataC mglQO3dc (const char *ham, const mglDataA &ini_re, const mglDataA &ini_im, const mglDataA &ray, mglData &xx, mglData &yy, mglData &zz, mreal r=1, mreal k0=100)
C function: HMDT mgl_qo3d_solve (const char *ham, HCDT ini_re, HCDT ini_im, HCDT ray, mreal r, mreal k0, HMDT xx, HMDT yy, HMDT zz)
C function: HADT mgl_qo3d_solve_c (const char *ham, HCDT ini_re, HCDT ini_im, HCDT ray, mreal r, mreal k0, HMDT xx, HMDT yy, HMDT zz)
C function: HMDT mgl_qo3d_func (dual (*ham)(mreal u, mreal x, mreal y, mreal z, mreal px, mreal py, mreal pz, void *par), HCDT ini_re, HCDT ini_im, HCDT ray, mreal r, mreal k0, HMDT xx, HMDT yy, HMDT zz)
C function: HADT mgl_qo3d_func_c (dual (*ham)(mreal u, mreal x, mreal y, mreal z, mreal px, mreal py, mreal pz, void *par), HCDT ini_re, HCDT ini_im, HCDT ray, mreal r, mreal k0, HMDT xx, HMDT yy, HMDT zz)

Solves equation du/dt = i*k0*ham(p,q,v,x,y,z,|u|)[u], where p=-i/k0*d/dx, q=-i/k0*d/dy, v=-i/k0*d/dz are pseudo-differential operators (see mglPDE() for details). Parameters ini_re, ini_im specify real and imaginary part of initial field distribution. Parameters ray set the reference ray, i.e. the ray around which the accompanied coordinate system will be maked. You may use, for example, the array created by ray function. Note, that the reference ray must be smooth enough to make accompanied coodrinates unambiguity. Otherwise errors in the solution may appear. If xx and yy and zz are non-zero then Cartesian coordinates for each point will be written into them. See also pde, qo2d. See PDE solving hints, for sample code and picture.

MGL command: jacobian RES xdat ydat [zdat]
Global function: mglData mglJacobian (const mglDataA &x, const mglDataA &y)
Global function: mglData mglJacobian (const mglDataA &x, const mglDataA &y, const mglDataA &z)
C function: HMDT mgl_jacobian_2d (HCDT x, HCDT y)
C function: HMDT mgl_jacobian_3d (HCDT x, HCDT y, HCDT z)

Computes the Jacobian for transformation {i,j,k} to {x,y,z} where initial coordinates {i,j,k} are data indexes normalized in range [0,1]. The Jacobian is determined by formula det||dr_\alpha/d\xi_\beta|| where r={x,y,z} and \xi={i,j,k}. All dimensions must be the same for all data arrays. Data must be 3D if all 3 arrays {x,y,z} are specified or 2D if only 2 arrays {x,y} are specified.

MGL command: triangulation RES xdat ydat
Global function: mglData mglTriangulation (const mglDataA &x, const mglDataA &y)
C function: HMDT mgl_triangulation_2d (HCDT x, HCDT y)

Computes triangulation for arbitrary placed points with coordinates {x,y} (i.e. finds triangles which connect points). MathGL use s-hull code for triangulation. The sizes of 1st dimension must be equal for all arrays x.nx=y.nx. Resulting array can be used in triplot or tricont functions for visualization of reconstructed surface. See Making regular data, for sample code and picture.

Global function: mglData mglGSplineInit (const mglDataA &x, const mglDataA &y)
Global function: mglDataC mglGSplineCInit (const mglDataA &x, const mglDataA &y)
C function: HMDT mgl_gspline_init (HCDT x, HCDT y)
C function: HADT mgl_gsplinec_init (HCDT x, HCDT y)

Prepare coefficients for global cubic spline interpolation.

Global function: mreal mglGSpline (const mglDataA &coef, mreal dx, mreal *d1=0, mreal *d2=0)
Global function: dual mglGSplineC (const mglDataA &coef, mreal dx, dual *d1=0, dual *d2=0)
C function: mreal mgl_gspline (HCDT coef, mreal dx, mreal *d1, mreal *d2)
C function: dual mgl_gsplinec (HCDT coef, mreal dx, dual *d1, dual *d2)

Evaluate global cubic spline (and its 1st and 2nd derivatives d1, d2 if they are not NULL) using prepared coefficients coef at point dx+x0 (where x0 is 1st element of data x provided to mglGSpline*Init() function).

MGL command: ifs2d RES dat num [skip=20]
Global function: mglData mglIFS2d (const mglDataA &dat, long num, long skip=20)
C function: HMDT mgl_data_ifs_2d (HCDT dat, long num, long skip)

Computes num points {x[i]=res[0,i], y[i]=res[1,i]} for fractal using iterated function system. Matrix dat is used for generation according the formulas

x[i+1] = dat[0,i]*x[i] + dat[1,i]*y[i] + dat[4,i];
y[i+1] = dat[2,i]*x[i] + dat[3,i]*y[i] + dat[5,i];

Value dat[6,i] is used as weight factor for i-th row of matrix dat. At this first skip iterations will be omitted. Data array dat must have x-size greater or equal to 7. See also ifs3d, flame2d. See Sample ‘ifs2d, for sample code and picture.

MGL command: ifs3d RES dat num [skip=20]
Global function: mglData mglIFS3d (const mglDataA &dat, long num, long skip=20)
C function: HMDT mgl_data_ifs_3d (HCDT dat, long num, long skip)

Computes num points {x[i]=res[0,i], y[i]=res[1,i], z[i]=res[2,i]} for fractal using iterated function system. Matrix dat is used for generation according the formulas

x[i+1] = dat[0,i]*x[i] + dat[1,i]*y[i] + dat[2,i]*z[i] + dat[9,i];
y[i+1] = dat[3,i]*x[i] + dat[4,i]*y[i] + dat[5,i]*z[i] + dat[10,i];
z[i+1] = dat[6,i]*x[i] + dat[7,i]*y[i] + dat[8,i]*z[i] + dat[11,i];

Value dat[12,i] is used as weight factor for i-th row of matrix dat. At this first skip iterations will be omitted. Data array dat must have x-size greater or equal to 13. See also ifs2d. See Sample ‘ifs3d, for sample code and picture.

MGL command: ifsfile RES 'fname' 'name' num [skip=20]
Global function: mglData mglIFSfile (const char *fname, const char *name, long num, long skip=20)
C function: HMDT mgl_data_ifs_file (const char *fname, const char *name, long num, long skip)

Reads parameters of IFS fractal named name from file fname and computes num points for this fractal. At this first skip iterations will be omitted. See also ifs2d, ifs3d.

IFS file may contain several records. Each record contain the name of fractal (‘binary’ in the example below) and the body of fractal, which is enclosed in curly braces {}. Symbol ‘;’ start the comment. If the name of fractal contain ‘(3D)’ or ‘(3d)’ then the 3d IFS fractal is specified. The sample below contain two fractals: ‘binary’ – usual 2d fractal, and ‘3dfern (3D)’ – 3d fractal. See also ifs2d, ifs3d.

 binary
 { ; comment allowed here
  ; and here
  .5  .0 .0 .5 -2.563477 -0.000003 .333333   ; also comment allowed here
  .5  .0 .0 .5  2.436544 -0.000003 .333333
  .0 -.5 .5 .0  4.873085  7.563492 .333333
  }

 3dfern (3D) {
   .00  .00 0 .0 .18 .0 0  0.0 0.00 0 0.0 0 .01
   .85  .00 0 .0 .85 .1 0 -0.1 0.85 0 1.6 0 .85
   .20 -.20 0 .2 .20 .0 0  0.0 0.30 0 0.8 0 .07
  -.20  .20 0 .2 .20 .0 0  0.0 0.30 0 0.8 0 .07
  }
MGL command: flame2d RES dat func num [skip=20]
Global function: mglData mglFlame2d (const mglDataA &dat, const mglDataA &func, long num, long skip=20)
C function: HMDT mgl_data_flame_2d (HCDT dat, HCDT func, long num, long skip)

Computes num points {x[i]=res[0,i], y[i]=res[1,i]} for "flame" fractal using iterated function system. Array func define "flame" function identificator (func[0,i,j]), its weight (func[0,i,j]) and arguments (func[2 ... 5,i,j]). Matrix dat set linear transformation of coordinates before applying the function. The resulting coordinates are

xx = dat[0,i]*x[j] + dat[1,j]*y[i] + dat[4,j];
yy = dat[2,i]*x[j] + dat[3,j]*y[i] + dat[5,j];
x[j+1] = sum_i @var{func}[1,i,j]*@var{func}[0,i,j]_x(xx, yy; @var{func}[2,i,j],...,@var{func}[5,i,j]);
y[j+1] = sum_i @var{func}[1,i,j]*@var{func}[0,i,j]_y(xx, yy; @var{func}[2,i,j],...,@var{func}[5,i,j]);

The possible function ids are: mglFlame2d_linear=0, mglFlame2d_sinusoidal, mglFlame2d_spherical, mglFlame2d_swirl, mglFlame2d_horseshoe, mglFlame2d_polar, mglFlame2d_handkerchief,mglFlame2d_heart, mglFlame2d_disc, mglFlame2d_spiral, mglFlame2d_hyperbolic, mglFlame2d_diamond, mglFlame2d_ex, mglFlame2d_julia, mglFlame2d_bent, mglFlame2d_waves, mglFlame2d_fisheye, mglFlame2d_popcorn, mglFlame2d_exponential, mglFlame2d_power, mglFlame2d_cosine, mglFlame2d_rings, mglFlame2d_fan, mglFlame2d_blob, mglFlame2d_pdj, mglFlame2d_fan2, mglFlame2d_rings2, mglFlame2d_eyefish, mglFlame2d_bubble, mglFlame2d_cylinder, mglFlame2d_perspective, mglFlame2d_noise, mglFlame2d_juliaN, mglFlame2d_juliaScope, mglFlame2d_blur, mglFlame2d_gaussian, mglFlame2d_radialBlur, mglFlame2d_pie, mglFlame2d_ngon, mglFlame2d_curl, mglFlame2d_rectangles, mglFlame2d_arch, mglFlame2d_tangent, mglFlame2d_square, mglFlame2d_blade, mglFlame2d_secant, mglFlame2d_rays, mglFlame2d_twintrian, mglFlame2d_cross, mglFlame2d_disc2, mglFlame2d_supershape, mglFlame2d_flower, mglFlame2d_conic, mglFlame2d_parabola, mglFlame2d_bent2, mglFlame2d_bipolar, mglFlame2d_boarders, mglFlame2d_butterfly, mglFlame2d_cell, mglFlame2d_cpow, mglFlame2d_curve, mglFlame2d_edisc, mglFlame2d_elliptic, mglFlame2d_escher, mglFlame2d_foci, mglFlame2d_lazySusan, mglFlame2d_loonie, mglFlame2d_preBlur, mglFlame2d_modulus, mglFlame2d_oscope, mglFlame2d_polar2, mglFlame2d_popcorn2, mglFlame2d_scry, mglFlame2d_separation, mglFlame2d_split, mglFlame2d_splits, mglFlame2d_stripes, mglFlame2d_wedge, mglFlame2d_wedgeJulia, mglFlame2d_wedgeSph, mglFlame2d_whorl, mglFlame2d_waves2, mglFlame2d_exp, mglFlame2d_log, mglFlame2d_sin, mglFlame2d_cos, mglFlame2d_tan, mglFlame2d_sec, mglFlame2d_csc, mglFlame2d_cot, mglFlame2d_sinh, mglFlame2d_cosh, mglFlame2d_tanh, mglFlame2d_sech, mglFlame2d_csch, mglFlame2d_coth, mglFlame2d_auger, mglFlame2d_flux. Value dat[6,i] is used as weight factor for i-th row of matrix dat. At this first skip iterations will be omitted. Sizes of data arrays must be: dat.nx>=7, func.nx>=2 and func.nz=dat.ny. See also ifs2d, ifs3d. See Sample ‘flame2d, for sample code and picture.