11.100 Sample ‘qo2d

Example of PDE solving by quasioptical approach qo2d.

MGL code:

define $1 'p^2+q^2-x-1+i*0.5*(y+x)*(y>-x)'
subplot 1 1 0 '<_':title 'Beam and ray tracing'
ray r $1 -0.7 -1 0 0 0.5 0 0.02 2:plot r(0) r(1) 'k'
axis:xlabel '\i x':ylabel '\i z'
new re 128 'exp(-48*x^2)':new im 128
new xx 1:new yy 1
qo2d a $1 re im r 1 30 xx yy
crange 0 1:dens xx yy a 'wyrRk':fplot '-x' 'k|'
text 0 0.85 'absorption: (x+y)/2 for x+y>0'
text 0.7 -0.05 'central ray'

C++ code:

void smgl_qo2d(mglGraph *gr)
{
	mglData r, xx, yy, a, im(128), re(128);
	const char *ham = "p^2+q^2-x-1+i*0.5*(y+x)*(y>-x)";
	r = mglRay(ham, mglPoint(-0.7, -1), mglPoint(0, 0.5), 0.02, 2);
	if(big!=3)	{gr->SubPlot(1,1,0,"<_");	gr->Title("Beam and ray tracing");}
	gr->Plot(r.SubData(0), r.SubData(1), "k");
	gr->Axis();	gr->Label('x', "\\i x");	gr->Label('y', "\\i y");
	// now start beam tracing
	gr->Fill(re,"exp(-48*x^2)");
	a = mglQO2d(ham, re, im, r, xx, yy, 1, 30);
	gr->SetRange('c',0, 1);
	gr->Dens(xx, yy, a, "wyrRk");
	gr->FPlot("-x", "k|");
	gr->Puts(mglPoint(0, 0.85), "absorption: (x+y)/2 for x+y>0");
	gr->Puts(mglPoint(0.7, -0.05), "central ray");
}

Sample qo2d